
Chapter 1

Basic operators and adjoints

A great many of the calculations we do in science and engineering are really matrix mul-
tiplication in disguise. The first goal of this chapter is to unmask the disguise by showing
many examples. Second, we see how theadjoint operator (matrix transpose) back projects
information from data to the underlying model.

Geophysical modeling calculations generally use linear operators that predict data from
models. Our usual task is to find the inverse of these calculations; i.e., to find models (or make
images) from the data. Logically, the adjoint is the first step and a part of all subsequent steps
in this inversion process. Surprisingly, in practice the adjoint sometimes does a better job than
the inverse! This is because the adjoint operator tolerates imperfections in the data and does
not demand that the data provide full information.

Using the methods of this chapter, you will find that once you grasp the relationship be-
tween operators in general and their adjoints, you can obtain the adjoint just as soon as you
have learned how to code the modeling operator.

If you will permit me a poet’s license with words, I will offer you the following table of
operators and theiradjoints:

matrix multiply conjugate-transpose matrix multiply
convolve crosscorrelate
truncate zero pad
replicate, scatter, spray sum or stack
spray into neighborhood sum in bins
derivative (slope) negative derivative
causal integration anticausal integration
add functions do integrals
assignment statements added terms
plane-wave superposition slant stack / beam form
superpose curves sum along a curve
stretch squeeze
upward continue downward continue

1

2 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

diffraction modeling imaging by migration
hyperbola modeling CDP stacking
ray tracing tomography

The left column above is often called “modeling,” and the adjoint operators on the right
are often used in “dataprocessing.”

When the adjoint operator isnotan adequate approximation to the inverse, then you apply
the techniques of fitting and optimization explained in Chapter 2. These techniques require
iterative use of the modeling operator and its adjoint.

The adjoint operator is sometimes called the “back projection” operator because infor-
mation propagated in one direction (earth to data) is projected backward (data to earth model).
Using complex-valued operators, the transpose and complex conjugate go together; and in
Fourier analysis, taking the complex conjugate of exp(i ωt) reverses the sense of time. With
more poetic license, I say that adjoint operatorsundo the time and phase shifts of modeling
operators. The inverse operator does this too, but it also divides out the color. For example,
when linear interpolation is done, then high frequencies are smoothed out, so inverse inter-
polation must restore them. You can imagine the possibilities for noise amplification. That
is why adjoints are safer than inverses. But nature determines in each application what is the
best operator to use, and whether to stop after the adjoint, to go the whole way to the inverse,
or to stop partway.

The operators and adjoints above transform vectors to other vectors. They also transform
data planes to model planes, volumes, etc. A mathematical operator transforms an “abstract
vector” which might be packed full of volumes of information like television signals (time
series) can pack together a movie, a sequence of frames. We can always think of the operator
as being a matrix but the matrix can be truly huge (and nearly empty). When the vectors
transformed by the matrices are large like geophysical data set sizes then the matrix sizes
are “large squared,” far too big for computers. Thus although we can always think of an
operator as a matrix, in practice, we handle an operator differently. Each practical application
requires the practitioner to prepare two computer programs. One performs the matrix multiply
y= Ax and another multiplys by the transposex̃= A′y (without ever having the matrix itself
in memory). It is always easy to transpose a matrix. It is less easy to take a computer program
that doesy= Ax and convert it to another to dõx= A′y. In this chapter are many examples of
increasing complexity. At the end of the chapter we will see a test for any program pair to see
whether the operatorsA andA′ are mutually adjoint as they should be. Doing the job correctly
(coding adjoints without making approximations) will reward us later when we tackle model
and image estimation problems.

1.0.1 Programming linear operators

The operationyi =
∑

j bi j xj is the multiplication of a matrixB by a vectorx. The adjoint
operation is̃xj =

∑
i bi j yi . The operation adjoint to multiplication by a matrix is multiplication

3

by the transposed matrix (unless the matrix has complex elements, in which case we need the
complex-conjugated transpose). The followingpseudocodedoes matrix multiplicationy=Bx
and multiplication by the transposex̃= B′y:

if adjoint
then erase x

if operator itself
then erase y

do iy = 1, ny {
do ix = 1, nx {

if adjoint
x(ix) = x(ix) + b(iy,ix) × y(iy)

if operator itself
y(iy) = y(iy) + b(iy,ix) × x(ix)

}}

Notice that the “bottom line” in the program is thatx and y are simply interchanged. The
above example is a prototype of many to follow, so observe carefully the similarities and
differences between the adjoint and the operator itself.

Next we restate the matrix-multiply pseudo code in real code, in a language calledLop-
tran1, a language designed for exposition and research in model fitting and optimization in
physical sciences. The modulematmult for matrix multiply and its adjoint exhibits the style
that we will use repeatedly. At last count there were 53 such routines (operator with adjoint)
in this book alone.

module matmult { # matrix multiply and its adjoint
real, dimension (:,:), pointer :: bb
#% _init(bb)
#% _lop(x, y)
integer ix, iy
do ix= 1, size(x) {
do iy= 1, size(y) {

if(adj)
x(ix) = x(ix) + bb(iy,ix) * y(iy)

else
y(iy) = y(iy) + bb(iy,ix) * x(ix)

}}
}

Notice that the modulematmult does not explicitly erase its output before it begins, as
does the psuedo code. That is because Loptran will always erase for you the space re-
quired for the operator’s output. Loptran also defines a logical variableadj for you to to
distinguish your computation of the adjointx=x+B’*y from the forward operationy=y+B*x .

1The programming language, Loptran, is based on a dialect of Fortran called Ratfor. For more details, see
Appendix A.

4 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

In computerese, the two lines beginning #% are macro expansions that take compact bits
of information which expand into the verbose boilerplate that Fortran requires. Loptran is
Fortran with these macro expansions. You can always see how they expand by looking at
http://sepwww.stanford.edu/sep/prof/gee/Lib/ .

What is new in Fortran 90, and will be a big help to us, is that instead of a subroutine with
a single entry, we now have a module with two entries, one named_init for the physical
scientist who defines the physical problem by defining the matrix, and another named_lop for
the least-squares problem solver, the computer scientist who will not be interested in how we
specifyB, but who will be iteratively computingBx andB′y to optimize the model fitting. The
lines beginning with#%are expanded by Loptran into more verbose and distracting Fortran 90
code. The second line in the modulematmult , however, is pure Fortran syntax saying thatbb

is a pointer to a real-valued matrix.

To usematmult , two calls must be made, the first one

call matmult_init(bb)

is done by the physical scientist after he or she has prepared the matrix. Most later calls will
be done by numerical analysts in solving code like in Chapter 2. These calls look like

stat = matmult_lop(adj, add, x, y)

whereadj is the logical variable saying whether we desire the adjoint or the operator itself,
and whereadd is a logical variable saying whether we want to accumulate likey← y+Bx
or whether we want to erase first and thus doy← Bx. The return valuestat is an integer
parameter, mostly useless (unless you want to use it for error codes).

Operator initialization often allocates memory. To release this memory, you cancall

matmult_close() although in this case nothing really happens.

1.1 FAMILIAR OPERATORS

The simplest and most fundamental linear operators arise when a matrix operator reduces to a
simple row or a column.

A row is a summation operation.

A column is an impulse response.

If the inner loop of a matrix multiply ranges within a

row, the operator is calledsumor pull.

column, the operator is calledsprayor push.

1.1. FAMILIAR OPERATORS 5

A basic aspect of adjointness is that the adjoint of a row matrix operator is a column matrix
operator. For example, the row operator [a,b]

y = [a b]

[
x1

x2

]
= ax1+bx2 (1.1)

has an adjoint that is two assignments:[
x̂1

x̂2

]
=

[
a
b

]
y (1.2)

The adjoint of a sum ofN terms is a collection ofN assignments.

1.1.1 Adjoint derivative

Given a sampled signal, its timederivative can be estimated by convolution with the filter
(1,−1)/1t , expressed as the matrix-multiply below:

y1

y2

y3

y4

y5

y6

 =

−1 1
. −1 1 . . .
. . −1 1 . .
. . . −1 1 .
. . . . −1 1
. 0

x1

x2

x3

x4

x5

x6

 (1.3)

The filter impulse responseis seen in any column in the middle of the matrix, namely
(1,−1). In the transposed matrix, the filter-impulse response is time-reversed to (−1,1). So,
mathematically, we can say that the adjoint of the time derivative operation is the negative
time derivative. This corresponds also to the fact that the complex conjugate of−i ω is i ω. We
can also speak of the adjoint of the boundary conditions: we might say that the adjoint of “no
boundary condition” is a “specified value” boundary condition.

A complicated way to think about the adjoint of equation (1.3) is to note that it is the
negative of the derivative and that something must be done about the ends. A simpler way
to think about it is to apply the idea that the adjoint of a sum ofN terms is a collection of
N assignments. This is done in moduleigrad1 , which implements equation (1.3) and its
adjoint. The last row in equation (1.3) is optional and depends not on the code shown, but
the code that invokes it. It may seem unnatural to append a null row, but it can be a small
convenience (when plotting) to have the input and output be the same size.

module igrad1 { # gradient in one dimension
#% _lop(xx, yy)
integer i
do i= 1, size(xx)-1 {

if(adj) {

6 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

xx(i+1) = xx(i+1) + yy(i) # resembles equation (1.2)
xx(i) = xx(i) - yy(i)
}

else
yy(i) = yy(i) + xx(i+1) - xx(i) # resembles equation (1.1)

}
}

The do loop overi assures that all values ofyy(i) are used, whether computing all theoutputs
for the operator itself, or in the adjoint, using all theinputs. In switching from operator to
adjoint, the outputs switch to inputs. The Loptran dialect allows us to write the inner code
of the igrad1 module more simply and symmetrically using the syntax of C, C++, and Java
where expressions likea=a+b can be written more tersely asa+=b . With this, the heart of
moduleigrad1 becomes

if(adj) { xx(i+1) += yy(i)

xx(i) -= yy(i)

}

else { yy(i) += xx(i+1)

yy(i) -= xx(i)

}

where we see that each component of the matrix is handled both by the operator and the
adjoint. Think about the forward operator “pulling” a sum intoyy(i) , and think about the
adjoint operator “pushing” or “spraying” the impulseyy(i) back intoxx() . Something odd
happens at the ends of the adjoint only if we take the perspective that the adjoint should have
been computed one component at a time instead of all together. By not taking that view, we
avoid that confusion.

Figure 1.1 illustrates the use of moduleigrad1 for each north-south line of a topographic
map. We observe that the gradient gives an impression of illumination from a low sun angle.
To applyigrad1 along the 1-axis for each point on the 2-axis of a two-dimensional map, we
use the loop

do iy=1,ny

stat = igrad1_lop(adj, add, map(:,iy), ruf(:,iy))

On the other hand, to see the east-west gradient, we use the loop

do ix=1,nx

stat = igrad1_lop(adj, add, map(ix,:), ruf(ix,:))

1.1. FAMILIAR OPERATORS 7

Figure 1.1: Topography near Stanford (top) southward slope (bottom).ajt-stangrad90
[ER,M]

8 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

1.1.2 Transient convolution

Matrix multiplication and transpose multiplication still fit easily in the same computational
framework when the matrix has a special form, such as

y =

y1

y2

y3

y4

y5

y6

y7

y8

=

b1 0 0 0 0 0
b2 b1 0 0 0 0
b3 b2 b1 0 0 0
0 b3 b2 b1 0 0
0 0 b3 b2 b1 0
0 0 0 b3 b2 b1

0 0 0 0 b3 b2

0 0 0 0 0 b3

x1

x2

x3

x4

x5

x6

 = Bx (1.4)

Notice that columns of equation (1.4) all contain the same signal, but with different shifts.
This signal is called the filter’s impulse response.

Equation (1.4) could be rewritten as

y =

y1

y2

y3

y4

y5

y6

y7

y8

=

x1 0 0
x2 x1 0
x3 x2 x1

x4 x3 x2

x5 x4 x3

x6 x5 x4

0 x6 x5

0 0 x6

 b1

b2

b3

 = Xb (1.5)

In applications we can choose betweeny= Xb andy= Bx. In one case the outputy is dual to
the filterb, and in the other case the outputy is dual to the inputx. Sometimes we must solve
for b and sometimes forx; so sometimes we use equation (1.5) and sometimes (1.4). Such
solutions begin from the adjoints. The adjoint of (1.4) is

x̂1

x̂2

x̂3

x̂4

x̂5

x̂6

 =

b1 b2 b3 0 0 0 0 0
0 b1 b2 b3 0 0 0 0
0 0 b1 b2 b3 0 0 0
0 0 0 b1 b2 b3 0 0
0 0 0 0 b1 b2 b3 0
0 0 0 0 0 b1 b2 b3

y1

y2

y3

y4

y5

y6

y7

y8

(1.6)

The adjointcrosscorrelates with the filter instead of convolving with it (because the filter is
backwards). Notice that each row in equation (1.6) contains all the filter coefficients and there
are no rows where the filter somehow uses zero values off the ends of the data as we saw
earlier. In some applications it is important not to assume zero values beyond the interval
where inputs are given.

1.1. FAMILIAR OPERATORS 9

The adjoint of (1.5) crosscorrelates a fixed portion of filter input across a variable portion
of filter output.

 b̂1

b̂2

b̂3

 =

 x1 x2 x3 x4 x5 x6 0 0
0 x1 x2 x3 x4 x5 x6 0
0 0 x1 x2 x3 x4 x5 x6

y1

y2

y3

y4

y5

y6

y7

y8

(1.7)

Module tcai1 is used fory= Bx and moduletcaf1 is used fory= Xb.

module tcai1 { # Transient Convolution Adjoint Input 1-D. yy(m1+n1)
real, dimension (:), pointer :: bb
#% _init(bb)
#% _lop (xx, yy)
integer b, x, y
if(size(yy) < size (xx) + size(bb) - 1) call erexit(’tcai’)
do b= 1, size(bb) {
do x= 1, size(xx) { y = x + b - 1

if(adj) xx(x) += yy(y) * bb(b)
else yy(y) += xx(x) * bb(b)
}}

}

module tcaf1 { # Transient Convolution, Adjoint is the Filter, 1-D
real, dimension (:), pointer :: xx
#% _init(xx)
#% _lop (bb, yy)
integer x, b, y
if(size(yy) < size(xx) + size(bb) - 1) call erexit(’tcaf’)
do b= 1, size(bb) {
do x= 1, size(xx) { y = x + b - 1

if(adj) bb(b) += yy(y) * xx(x)
else yy(y) += bb(b) * xx(x)
} }

}

1.1.3 Internal convolution

Convolution is the computational equivalent of ordinary linear differential operators (with
constant coefficients). Applications are vast, and end effects are important. Another choice
of data handling at ends is that zero data not be assumed beyond the interval where the data
is given. This is important in data where the crosscorrelation changes with time. Then it is
sometimes handled as constant in short time windows. Care must be taken that zero signal
values not be presumed off the ends of those short time windows; otherwise, the many ends of
the many short segments can overwhelm the results.

10 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

In the sets (1.4) and (1.5), the top two equations explicitly assume that the input data
vanishes before the interval on which it is given, and likewise at the bottom. Abandoning the
top two and bottom two equations in (1.5) we get:

y3

y4

y5

y6

 =

x3 x2 x1

x4 x3 x2

x5 x4 x3

x6 x5 x4

 b1

b2

b3

 (1.8)

The adjoint is

 b̂1

b̂2

b̂3

 =

 x3 x4 x5 x6

x2 x3 x4 x5

x1 x2 x3 x4

y3

y4

y5

y6

 (1.9)

The difference between (1.9) and (1.7) is that here the adjoint crosscorrelates a fixed portion
of outputacross a variable portion ofinput, whereas with (1.7) the adjoint crosscorrelates a
fixed portion ofinputacross a variable portion ofoutput.

In practice we typically allocate equal space for input and output. Because the output is
shorter than the input, it could slide around in its allocated space, so its location is specified
by an additional parameter called itslag . The statementx=y-b+lag in moduleicaf1 says
that the output timey aligns with the input timex for the filter pointb=lag .

module icaf1 { # Internal Convolution, Adjoint is Filter. 1-D
integer :: lag
real, dimension (:), pointer :: xx
#% _init (xx, lag)
#% _lop (bb, yy)
integer x, b, y
do b= 1, size(bb) {

do y= 1+size(bb)-lag, size(yy)-lag+1 { x= y - b + lag
if(adj) bb(b) += yy(y) * xx(x)
else yy(y) += bb(b) * xx(x)
}

}
}

The value oflag always used in this book islag=1 . For lag=1 the moduleicaf1 imple-
ments not equation (1.8) but (1.10):

y1

y2

y3

y4

y5

y6

 =

0 0 0
0 0 0
x3 x2 x1

x4 x3 x2

x5 x4 x3

x6 x5 x4

 b1

b2

b3

 (1.10)

1.1. FAMILIAR OPERATORS 11

It may seem a little odd to put the required zeros at the beginning of the output, but filters
are generally designed so that their strongest coefficient is the first, namelybb(1) so the
alignment of input and output in equation (1.10) is the most common one.

Theend effects of the convolution modules are summarized in Figure 1.2.

Figure 1.2: Example of convolution
end-effects. From top to bottom: in-
put; filter; output oftcai1() ; out-
put of icaf1() also with (lag=1).
ajt-conv90 [ER]

1.1.4 Zero padding is the transpose of truncation

Surrounding a dataset by zeros (zero padding) is adjoint to throwing away the extended data
(truncation). Let us see why this is so. Set a signal in a vectorx, and then to make a longer
vectory, add some zeros at the end ofx. This zero padding can be regarded as the matrix
multiplication

y =

[
I
0

]
x (1.11)

The matrix is simply an identity matrixI above a zero matrix0. To find the transpose to
zero-padding, we now transpose the matrix and do another matrix multiply:

x̃ =
[

I 0
]

y (1.12)

So the transpose operation to zero padding data is simplytruncatingthe data back to its origi-
nal length. Modulezpad1 below pads zeros on both ends of its input. Modules for two- and
three-dimensional padding are in the library namedzpad2() andzpad3() .

module zpad1 { # Zero pad. Surround data by zeros. 1-D
#% _lop(data, padd)
integer p, d
do d= 1, size(data) { p = d + (size(padd)-size(data))/2

if(adj)
data(d) = data(d) + padd(p)

else
padd(p) = padd(p) + data(d)

}
}

12 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

1.1.5 Adjoints of products are reverse-ordered products of adjoints

Here we examine an example of the general idea that adjoints of products are reverse-ordered
products of adjoints. For this example we use the Fourier transformation. No details of
Fourier transformation are given here and we merely use it as an example of a square matrix
F. We denote the complex-conjugate transpose (oradjoint) matrix with a prime, i.e.,F′. The
adjoint arises naturally whenever we consider energy. The statement that Fourier transforms
conserve energy isy′y= x′x wherey= Fx. Substituting givesF′F= I , which shows that the
inverse matrix to Fourier transform happens to be the complex conjugate of the transpose of
F.

With Fourier transforms,zero padding andtruncation are especially prevalent. Most
modules transform a dataset of length of 2n, whereas dataset lengths are often of lengthm×
100. The practical approach is therefore to pad given data with zeros. Padding followed by
Fourier transformationF can be expressed in matrix algebra as

Program = F
[

I
0

]
(1.13)

According to matrix algebra, the transpose of a product, sayAB =C, is the productC′ =B′A′

in reverse order. So the adjoint routine is given by

Program′ =
[

I 0
]

F′ (1.14)

Thus the adjoint routinetruncatesthe dataafter the inverse Fourier transform. This concrete
example illustrates that common sense often represents the mathematical abstraction that ad-
joints of products are reverse-ordered products of adjoints. It is also nice to see a formal
mathematical notation for a practical necessity. Making an approximation need not lead to
collapse of all precise analysis.

1.1.6 Nearest-neighbor coordinates

In describing physical processes, we often either specify models as values given on a uniform
mesh or we record data on a uniform mesh. Typically we have a functionf of time t or
depthz and we represent it byf(iz) corresponding tof (zi) for i = 1,2,3,. . . ,nz where
zi = z0+ (i −1)1z. We sometimes need to handle depth as an integer counting variablei and
we sometimes need to handle it as a floating-point variablez. Conversion from the counting
variable to the floating-point variable is exact and is often seen in a computer idiom such as
either of

do iz= 1, nz { z = z0 + (iz-1) * dz

do i3= 1, n3 { x3 = o3 + (i3-1) * d3

The reverse conversion from the floating-point variable to the counting variable is inexact. The
easiest thing is to place it at the nearest neighbor. This is done by solving foriz , then adding
one half, and then rounding down to the nearest integer. The familiar computer idioms are:

1.1. FAMILIAR OPERATORS 13

iz = .5 + 1 + (z - z0) / dz

iz = 1.5 + (z - z0) / dz

i3 = 1.5 + (x3 - o3) / d3

A small warning is in order: People generally use positive counting variables. If you also
include negative ones, then to get the nearest integer, you should do your rounding with the
Fortran functionNINT() .

1.1.7 Data-push binning

Binning is putting data values in bins. Nearest-neighbor binning is an operator. There is both
a forward operator and its adjoint. Normally the model consists of values given on a uniform
mesh, and the data consists of pairs of numbers (ordinates at coordinates) sprinkled around in
the continuum (although sometimes the data is uniformly spaced and the model is not).

In both the forward and the adjoint operation, each data coordinate is examined and the
nearest mesh point (the bin) is found. For the forward operator, the value of the bin is added
to that of the data. The adjoint is the reverse: we add the value of the data to that of the bin.
Both are shown in two dimensions in modulebin2 .

module bin2 { # Data-push binning in 2-D.
integer :: m1, m2
real :: o1,d1,o2,d2
real, dimension (:,:), pointer :: xy
#% _init(m1,m2, o1,d1,o2,d2,xy)
#% _lop (mm (m1,m2), dd (:))
integer i1,i2, id
do id=1,size(dd) {

i1 = 1.5 + (xy(id,1)-o1)/d1
i2 = 1.5 + (xy(id,2)-o2)/d2
if(1<=i1 && i1<=m1 &&

1<=i2 && i2<=m2)
if(adj)

mm(i1,i2) = mm(i1,i2) + dd(id)
else

dd(id) = dd(id) + mm(i1,i2)
}

}

The most typical application requires an additional step, inversion. In the inversion appli-
cations each bin contains a different number of data values. After the adjoint operation is
performed, the inverse operator divides the bin value by the number of points in the bin. It is
this inversion operator that is generally called binning. To find the number of data points in a
bin, we can simply apply the adjoint ofbin2 to pseudo data of all ones. To capture this idea
in an equation, letB denote the linear operator in which the bin value is sprayed to the data
values. The inverse operation, in which the data values in the bin are summed and divided by
the number in the bin, is represented by

m = diag(B′1)−1B′d (1.15)

14 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

Empty bins, of course, leave us a problem. That we’ll address in chapter 3. In Figure 1.3, the
empty bins contain zero values.

Figure 1.3: Binned depths of the Sea of Galilee.ajt-galbin90 [ER]

1.1.8 Linear interpolation

The linear interpolation operator is much like the binning operator but a little fancier. When
we perform the forward operation, we take each data coordinate and see which two model
bin centers bracket it. Then we pick up the two bracketing model values and weight each of
them in proportion to their nearness to the data coordinate, and add them to get the data value
(ordinate). The adjoint operation is adding a data value back into the model vector; using the
same two weights, the adjoint distributes the data ordinate value between the two nearest bins
in the model vector. For example, suppose we have a data point near each end of the model
and a third data point exactly in the middle. Then for a model space 6 points long, as shown
in Figure 1.4, we have the operator in (1.16).

 d0

d1

d2

 ≈

 .7 .3
. . 1 . . .
.5 .5

m0

m1

m2

m3

m4

m5

 (1.16)

1.1. FAMILIAR OPERATORS 15

Figure 1.4: Uniformly sampled
model space and irregularly sampled
data space corresponding to (1.16).
ajt-helgerud[NR]

d
 1

d
 2

m
 5

m
 4

m
 3

m
 2

m
 1

m
 0

d
 0

The two weights in each row sum to unity. If a binning operator were used for the same data
and model, the binning operator would contain a “1.” in each row. In one dimension (as here),
data coordinates are often sorted into sequence, so that the matrix is crudely a diagonal matrix
like equation (1.16). If the data coordinates covered the model space uniformly, the adjoint
would roughly be the inverse. Otherwise, when data values pile up in some places and gaps
remain elsewhere, the adjoint would be far from the inverse.

Module lint1 does linear interpolation and its adjoint. In chapters 3 and 6 we build
inverse operators.

Nearest-neighbor interpolation would do this: data = model(1.5 + (t-t0)/dt)
This is likewise but with _linear_ interpolation.
module lint1 {
real :: o1,d1
real, dimension (:), pointer :: coordinate
#% _init (o1,d1, coordinate)
#% _lop (mm, dd)
integer i, im, id
real f, fx,gx
do id= 1, size(dd) {

f = (coordinate(id)-o1)/d1; i=f ; im= 1+i
if(1<=im && im< size(mm)) { fx=f-i; gx= 1.-fx

if(adj) {
mm(im) += gx * dd(id)
mm(im+1) += fx * dd(id)
}

else
dd(id) += gx * mm(im) + fx * mm(im+1)

}
}

}

1.1.9 Spray and sum : scatter and gather

Perhaps the most common operation is the summing of many values to get one value. Its
adjoint operation takes a single input value and throws it out to a space of many values. The
summation operator is a row vector of ones. Its adjoint is a column vector of ones. In
one dimension this operator is almost too easy for us to bother showing a routine. But it is
more interesting in three dimensions, where we could be summing or spraying on any of three
subscripts, or even summing on some and spraying on others. In modulespraysum , both
input and output are taken to be three-dimensional arrays. Externally, however, either could
be a scalar, vector, plane, or cube. For example, the internal arrayxx(n1,1,n3) could be

16 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

externally the matrixmap(n1,n3) . When modulespraysum is given the input dimensions
and output dimensions stated below, the operations stated alongside are implied.

(n1,n2,n3) (1,1,1) Sum a cube into a value.
(1,1,1) (n1,n2,n3) Spray a value into a cube.
(n1,1,1) (n1,n2,1) Spray a column into a matrix.
(1,n2,1) (n1,n2,1) Spray a row into a matrix.
(n1,n2,1) (n1,n2,n3) Spray a plane into a cube.
(n1,n2,1) (n1,1,1) Sum rows of a matrix into a column.
(n1,n2,1) (1,n2,1) Sum columns of a matrix into a row.
(n1,n2,n3) (n1,n2,n3) Copy and add the whole cube.

If an axis is not of unit length on either input or output, then both lengths must be the same;
otherwise, there is an error. Normally, after (possibly) erasing the output, we simply loop over
all points on each axis, adding the input to the output. This implements either a copy or an
add, depending on theadd parameter. It is either a spray, a sum, or a copy, according to the
specified axis lengths.

module spraysum { # Spray or sum over 1, 2, and/or 3-axis.
integer :: n1,n2,n3, m1,m2,m3
#% _init(n1,n2,n3, m1,m2,m3)
#% _lop(xx(n1,n2,n3), yy(m1,m2,m3))
integer i1,i2,i3, x1,x2,x3, y1,y2,y3

if(n1 != 1 && m1 != 1 && n1 != m1) call erexit(’spraysum: n1,m1’)
if(n2 != 1 && m2 != 1 && n2 != m2) call erexit(’spraysum: n2,m2’)
if(n3 != 1 && m3 != 1 && n3 != m3) call erexit(’spraysum: n3,m3’)

do i3= 1, max0(n3,m3) { x3= min0(i3,n3); y3= min0(i3,m3)
do i2= 1, max0(n2,m2) { x2= min0(i2,n2); y2= min0(i2,m2)
do i1= 1, max0(n1,m1) { x1= min0(i1,n1); y1= min0(i1,m1)

if(adj) xx(x1,x2,x3) += yy(y1,y2,y3)
else yy(y1,y2,y3) += xx(x1,x2,x3)
}}}

}

1.1.10 Causal and leaky integration

Causal integration is defined as

y(t) =

∫ t

−∞

x(τ) dτ (1.17)

Leaky integration is defined as

y(t) =

∫
∞

0
x(t− τ) e−ατ dτ (1.18)

As α→ 0, leaky integration becomes causal integration. The word “leaky” comes from elec-
trical circuit theory where the voltage on a capacitor would be the integral of the current if the
capacitor did not leak electrons.

1.1. FAMILIAR OPERATORS 17

Sampling the time axis gives a matrix equation that we should call causal summation, but
we often call it causal integration. Equation (1.19) represents causal integration forρ = 1 and
leaky integration for 0< ρ < 1.

y =

y0

y1

y2

y3

y4

y5

y6

=

1 0 0 0 0 0 0
ρ 1 0 0 0 0 0
ρ2 ρ 1 0 0 0 0
ρ3 ρ2 ρ 1 0 0 0
ρ4 ρ3 ρ2 ρ 1 0 0
ρ5 ρ4 ρ3 ρ2 ρ 1 0
ρ6 ρ5 ρ4 ρ3 ρ2 ρ 1

x0

x1

x2

x3

x4

x5

x6

= Cx (1.19)

(The discrete world is related to the continuous byρ = e−α1τ and in some applications, the
diagonal is 1/2 instead of 1.) Causal integration is the simplest prototype of a recursive op-
erator. The coding is trickier than that for the operators we considered earlier. Notice when
you computey5 that it is the sum of 6 terms, but that this sum is more quickly computed as
y5= ρy4+ x5. Thus equation (1.19) is more efficiently thought of as the recursion

yt = ρ yt−1+ xt t increasing (1.20)

(which forρ = 1 may also be regarded as a numerical representation of thedifferential equa-
tion dy/dt+αy= x(t).)

When it comes time to think about the adjoint, however, it is easier to think of equa-
tion (1.19) than of (1.20). Let the matrix of equation (1.19) be calledC. Transposing to getC′

and applying it toy gives us something back in the space ofx, namelyx̃ = C′y. From it we
see that the adjoint calculation, if done recursively, needs to be done backwards, as in

x̃t−1 = ρ x̃t + yt−1 t decreasing (1.21)

Thus the adjoint of causal integration isanticausal integration.

A module to do these jobs isleakint . The code for anticausal integration is not obvious
from the code for integration and the adjoint coding tricks we learned earlier. To understand
the adjoint, you need to inspect the detailed form of the expressionx̃ = C′y and take care to
get the ends correct. Figure 1.5 illustrates the program forρ = 1.

module leakint { # leaky integration
real :: rho
#% _init(rho)
#% _lop (xx, yy)
integer i, n
real tt
n = size (xx); tt = 0.
if(adj)

do i= n, 1, -1 { tt = rho*tt + yy(i)
xx(i) += tt
}

else
do i= 1, n { tt = rho*tt + xx(i)

yy(i) += tt
}

}

18 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

Figure 1.5: in1 is an input pulse.C
in1 is its causal integral. C’ in1

is the anticausal integral of the pulse.
in2 is a separated doublet. Its causal
integration is a box and its anticausal
integration is a negative box.CC in2

is the double causal integral ofin2 .
How can an equilateral triangle be
built? ajt-causint90[ER]

Later we will consider equations to march wavefields up towards the earth’s surface, a
layer at a time, an operator for each layer. Then the adjoint will start from the earth’s surface
and march down, a layer at a time, into the earth.

EXERCISES:

1 Consider the matrix

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 ρ 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

(1.22)

and others like it withρ in other locations. Show what combination of these matrices will
represent the leaky integration matrix in equation (1.19). What is the adjoint?

2 Modify the calculation in Figure 1.5 so that there is a triangle waveform on the bottom
row.

3 Notice that the triangle waveform is not time aligned with the inputin2 . Force time
alignment with the operatorC′C or CC′.

4 Modify leakint on the preceding page by changing the diagonal to contain 1/2 instead
of 1. Notice how time alignment changes in Figure 1.5.

1.1.11 Backsolving, polynomial division and deconvolution

Ordinary differential equations often lead us to the backsolving operator. For example, the
damped harmonic oscillator leads to a special case of equation (1.23) where (a3,a4,· · ·) = 0.

1.1. FAMILIAR OPERATORS 19

There is a huge literature on finite-difference solutions of ordinary differential equations that
lead to equations of this type. Rather than derive such an equation on the basis of many
possible physical arrangements, we can begin from the filter transformationB in (1.4) but put
the matrix on the other side of the equation so our transformation can be called one of inversion
or backsubstitution. Let us also force the matrixB to be a square matrix by truncating it with
T = [I 0], sayA = [I 0] B= TB. To link up with applications in later chapters, I specialize
to 1’s on the main diagonal and insert some bands of zeros.

Ay =

1 0 0 0 0 0 0
a1 1 0 0 0 0 0
a2 a1 1 0 0 0 0
0 a2 a1 1 0 0 0
0 0 a2 a1 1 0 0
a5 0 0 a2 a1 1 0
0 a5 0 0 a2 a1 1

y0

y1

y2

y3

y4

y5

y6

=

x0

x1

x2

x3

x4

x5

x6

= x (1.23)

Algebraically, this operator goes under the various names, “backsolving”, “polynomial divi-
sion”, and “deconvolution”. The leaky integration transformation (1.19) is a simple example
of backsolving whena1 = −ρ anda2 = a5 = 0. To confirm this, you need to verify that the
matrices in (1.23) and (1.19) are mutually inverse.

A typical row in equation (1.23) says

xt = yt +
∑
τ>0

aτ yt−τ (1.24)

Change the signs of all terms in equation (1.24) and move some terms to the opposite side

yt = xt −
∑
τ>0

aτ yt−τ (1.25)

Equation (1.25) is a recursion to findyt from the values ofy at earlier times.

The most rudimentary form of mathematics in which this recursion occurs is in con-
nection with multiplying and dividing polynomials. The transformation (1.23) can be de-
rived by multiplying two polynomials,Y(Z)= y0+ y1Z+ y2Z2

+ y3Z3
+ y4Z4

+ y5Z5 times
A(Z) = 1+ a1Z + a2Z2

+ a5Z5. Identifying thek-th power of Z in the productX(Z) =
A(Z)Y(Z) gives thek-th row of the transformation (1.23). Thus the operator in (1.23) is
Y(Z)= X(Z)/A(Z). The polynomials inZ are calledZ transforms. They may be recognized
as Fourier transforms whereZ = ei ω1t . Convolution corresponds to multiplying polynomials
(convolving the coefficients) and deconvolution (or backsolving) corresponds to polynomial
division.

A causal operator is one that uses its present and past inputs to make its current output.
Anticausal operators use the future but not the past. Causal operators are generally associated
with lower triangular matrices and positive powers ofZ, whereas anticausal operators are
associated with upper triangular matrices and negative powers ofZ. A transformation like
equation (1.23) but with the transposed matrix would require us to run the recursive solution
the opposite direction in time, as we did with leaky integration.

A module to backsolve (1.23) ispolydiv1 .

20 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

module polydiv1 { # Polynomial division (recursive filtering)
real, dimension (:), pointer :: aa
#% _init (aa)
#% _lop (xx, yy)
integer ia, ix, iy
real tt
if(adj)

do ix= size(xx), 1, -1 {
tt = yy(ix)
do ia = 1, min(size(aa), size (xx) - ix) {

iy = ix + ia
tt -= aa(ia) * xx(iy)
}

xx(ix) = xx(ix) + tt
}

else
do iy= 1, size(xx) {

tt = xx(iy)
do ia = 1, min(size(aa), iy-1) {

ix = iy - ia
tt -= aa(ia) * yy(ix)
}

yy(iy) = yy(iy) + tt
}

}

The more complicated an operator, the more complicated is its adjoint. Given a trans-
formation fromx to y that is TBy = x, we may wonder if the adjoint transform really is
(TB)′x̂ = y. It amounts to asking if the adjoint ofy = (TB)−1x is x̂ = ((TB)′)−1y. Mathe-
matically we are asking if the inverse of a transpose is the transpose of the inverse. This is
so because inAA−1

= I = I ′ = (A−1)′A′ the parenthesized object must be the inverse of its
neighborA′.

The adjoint has a meaning which is nonphysical. It is like the forward operator except that
we must begin at the final time and revert towards the first. The adjoint pendulum damps as
we compute it backward in time, but that, of course, means that the adjoint pendulum diverges
as it is viewed moving forward in time.

1.1.12 The basic low-cut filter

Many geophysical measurements contain very low-frequency noise called “drift.” For exam-
ple, it might take some months to survey the depth of a lake. Meanwhile, rainfall or evapora-
tion could change the lake level so that new survey lines become inconsistent with old ones.
Likewise, gravimeters are sensitive to atmospheric pressure, which changes with the weather.
A magnetic survey of an archeological site would need to contend with the fact that the earth’s
main magnetic field is changing randomly through time while the survey is being done. Such
noises are sometimes called “secular noise.”

The simplest way to eliminate low frequency noise is to take a time derivative. A disadvan-
tage is that the derivative changes the waveform from a pulse to a doublet (finite difference).

1.1. FAMILIAR OPERATORS 21

Here we examine the most basic low-cut filter. It preserves the waveform at high frequencies;
it has an adjustable parameter for choosing the bandwidth of the low cut; and it is causal (uses
the past but not the future).

We make our causal lowcut filter (highpass filter) by two stages which can be done in
either order.

1. Apply a time derivative, actually a finite difference, convolving the data with (1,−1).

2. Integrate, actually to do a leaky integration, to deconvolve with (1,−ρ) where numeri-
cally, ρ is slightly less than unity.

The convolution ensures that the zero frequency is removed. The leaky integration almost
undoes the differentiation (but does not restore the zero frequency). Adjusting the numerical
value ofρ adjusts the cutoff frequency of the filter. To learn the impulse response of the com-
bined processes, we need to convolve the finite difference (1,−1) with the leaky integration
(1,ρ,ρ2,ρ3,ρ4,· · ·). The result is (1,ρ,ρ2,ρ3,ρ4,· · ·) minus (0,1,ρ,ρ2,ρ3,· · ·). We can think
of this as (1,0,0,0,0,· · ·) minus (1−ρ)(1,ρ,ρ2,ρ3,· · ·). In other words the impulse response
is an impulse followed by the negative of a weak (1−ρ) decaying exponentialρt . Roughly
speaking, the cutoff frequency of the filter corresponds to matching one wavelength to the
exponential decay time.

Some exercise with Fourier transforms orZ-transforms2, shows the Fourier transform of
this highpass filter filter to be

H (Z) =
1− Z

1−ρZ
= 1− (1−ρ)[Z1

+ρZ2
+ρ2Z3

+ρ3Z4
· · ·] (1.26)

where the unit-delay operator isZ = ei ω1t and whereω is the frequency. A symmetical
(noncausal) lowcut filter would filter once forward withH (Z) and once backwards (adjoint)
with H (1/Z).

Seismological data is more complex. A single “measurement” consists of an explosion
and echo signals recorded at many locations. As before, a complete survey is a track (or
tracks) of explosion locations. Thus, in seismology, data space is higher dimensional. Its
most troublesome noise is not simply low frequency; it is low velocity. We will do more with
multidimensional data in later chapters.

EXERCISES:

1 Give an analytic expression for the waveform of equation (1.26).

2 Define a low-pass filter as 1−H (Z). What is the low-pass impulse response?

3 Put Galilee data on a coarse mesh. Consider north-south lines as one-dimensional signals.
Find the value ofρ for which H is the most pleasing filter.

2An introduction toZ-transforms is found in my earlier books, FGDP and ESA-PVI.

22 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

4 Find the value ofρ for which H̄ H is the most pleasing filter.

5 Find the value ofρ for which H applied to Galilee has minimum energy. (Experiment
with a range of about ten values around your favorite value.)

6 Find the value ofρ for which H̄ H applied to Galilee has minimum energy.

7 Repeat above for east-west lines.

Figure 1.6: The depth of the Sea of Galilee after roughening.ajt-galocut90[ER,M]

1.1.13 Nearest-neighbor normal moveout (NMO)

Normal-moveoutcorrection (NMO) is a geometrical correction of reflection seismic data that
stretches the time axis so that data recorded at nonzero separationx0 of shot and receiver, after
stretching, appears to be atx0 = 0. NMO correction is roughly like time-to-depth conversion
with the equationv2t2

= z2
+ x2

0. After the data atx0 is stretched fromt to z, it should look
like stretched data from any otherx (assuming these are plane horizontal reflectors, etc.). In
practice,z is not used; rather,traveltime depth τ is used, whereτ = z/v; sot2

= τ2
+ x2

0/v
2.

(Because of the limited alphabet of programming languages, I often use the keystrokez to
denoteτ .)

Typically, many receivers record each shot. Each seismogram can be transformed by NMO
and the results all added. This is called “stacking” or “NMO stacking.” The adjoint to this

1.1. FAMILIAR OPERATORS 23

operation is to begin from a model that is identical to the near-offset trace and spray this
trace to all offsets. From a matrix viewpoint, stacking is like arow vector of normal moveout
operators and modeling is like acolumn.

A module that does reverse moveout ishypotenusei . Given a zero-offset trace, it makes
another at non-zero offset. The adjoint does the usual normal moveout correction.

module hypotenusei { # Inverse normal moveout
integer :: nt
integer, dimension (nt), allocatable :: iz
#% _init(nt, t0, dt, xs)
integer it
real t0, dt, xs, t, zsquared
do it= 1, nt { t = t0 + dt*(it-1)

zsquared = t * t - xs * xs
if (zsquared >= 0.)

iz (it) = 1.5 + (sqrt(zsquared) - t0) /dt
else

iz (it) = 0
}

#% _lop(zz, tt)
integer it
do it= 1, nt {

if (iz (it) > 0) {
if(adj) zz(iz(it)) += tt(it)
else tt(it) += zz(iz(it))

}
}

}

A companion routineimospray loops over offsets and makes a trace for each. The ad-
joint of imospray is the industrial process of moveout and stack. My 1992 textbook (PVI)
illustrates many additional features of normal moveout.

module imospray { # inverse moveout and spray into a gather.
use hypotenusei
real :: x0,dx, t0,dt
integer :: nx,nt
#% _init (slow, x0,dx, t0,dt, nt,nx)

real slow
x0 = x0*slow
dx = dx*slow

#% _lop(stack(nt), gather(nt,nx))
integer ix, stat
do ix= 1, nx {

call hypotenusei_init (nt, t0, dt, x0 + dx*(ix-1))
stat = hypotenusei_lop (adj, .true., stack, gather(:,ix))
}

call hypotenusei_close ()
}

24 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

1.2 ADJOINT DEFINED: DOT-PRODUCT TEST

Having seen many examples ofspaces, operators, and adjoints, we should now see more
formal definitions because abstraction helps us push these concepts to their limits.

1.2.1 Definition of a vector space

An operator transforms aspaceto another space. Examples of spaces are model spacem
and data spaced. We think of these spaces as vectors whose components are packed with
numbers, either real or complex numbers. The important practical concept is that not only
does this packing include one-dimensional spaces like signals, two-dimensional spaces like
images, 3-D movie cubes, and zero-dimensional spaces like a data mean, etc, but spaces can
be sets of all the above. One space that is a set of three cubes is the earth’s magnetic field,
which has three components; and each component is a function of a three-dimensional space.
(The 3-Dphysical spacewe live in is not the abstractvector spaceof models and data so
abundant in this book. Here the word “space” without an adjective means the vector space.)

A more heterogeneous example of a vector space isdata tracks. A depth-sounding survey
of a lake can make a vector space that is a collection of tracks, a vector of vectors (each vector
having a different number of components, because lakes are not square). This vector space of
depths along tracks in a lake contains the depth values only. The (x, y)-coordinate information
locating each measured depth value is (normally) something outside the vector space. A data
space could also be a collection of echo soundings, waveforms recorded along tracks.

We briefly recall information about vector spaces found in elementary books: Letα be
any scalar. Then ifd1 is a vector andd2 is conformable with it, then other vectors areαd1

andd1+ d2. The size measure of a vector is a positive value called a norm. The norm is
usually defined to be thedot product (also called theL2 norm), sayd ·d. For complex data
it is d̄ ·d whered̄ is the complex conjugate ofd. In theoretical work the “length of a vector”
means the vector’s norm. In computational work the “length of a vector” means the number
of components in the vector.

Norms generally include aweighting function. In physics, the norm generally measures
a conserved quantity like energy or momentum, so, for example, a weighting function for
magnetic flux is permittivity. In data analysis, the proper choice of the weighting function is
a practical statistical issue, discussed repeatedly throughout this book. The algebraic view of
a weighting function is that it is a diagonal matrix with positive valuesw(i) ≥ 0 spread along
the diagonal, and it is denotedW = diag[w(i)]. With this weighting function theL2 norm
of a data space is denotedd′Wd. Standard notation for norms uses a double absolute value,
where||d|| = d′Wd. A central concept with norms is the triangle inequality,||d1+ d2|| ≤

||d1||+ ||d2|| whose proof you might recall (or reproduce with the use of dot products).

1.2. ADJOINT DEFINED: DOT-PRODUCT TEST 25

1.2.2 Dot-product test for validity of an adjoint

There is a huge gap between the conception of an idea and putting it into practice. During
development, things fail far more often than not. Often, when something fails, many tests
are needed to track down the cause of failure. Maybe the cause cannot even be found. More
insidiously, failure may be below the threshold of detection and poor performance suffered for
years. Thedot-product test enables us to ascertain whether the program for the adjoint of an
operator is precisely consistent with the operator itself. It can be, and it should be.

Conceptually, the idea of matrix transposition is simplya′i j = aj i . In practice, however, we
often encounter matrices far too large to fit in the memory of any computer. Sometimes it is
also not obvious how to formulate the process at hand as a matrix multiplication. (Examples
are differential equations and fast Fourier transforms.) What we find in practice is that an
application and its adjoint amounts to two routines. The first routine amounts to the matrix
multiplication Fx. The adjoint routine computesF′y, whereF′ is theconjugate-transpose
matrix. In later chapters we will be solving huge sets of simultaneous equations, in which
both routines are required. If the pair of routines are inconsistent, we are doomed from the
start. The dot-product test is a simple test for verifying that the two routines are adjoint to each
other.

The associative property of linear algebra says that we do not need parentheses in a vector-
matrix-vector product likey′Fx because we get the same result no matter where we put the
parentheses. They serve only to determine the sequence of computation. Thus,

y′(Fx) = (y′F)x (1.27)

y′(Fx) = (F′y)′x (1.28)

(In general, the matrix is not square.) To perform the dot-product test, load the vectorsx andy
with random numbers. Using your program forF, compute the vector̃y= Fx, and using your
program forF′, computex̃ = F′y. Inserting these into equation (1.28) gives you two scalars
that should be equal.

y′(Fx) = y′ỹ = x̃′x = (F′y)′x (1.29)

The left and right sides of this equation will be computationally equal only if the program
doingF′ is indeed adjoint to the program doingF (unless the random numbers do something
miraculous). The program for applying the dot product test isdot_test on the current page.
The Fortran way of passing a linear operator as an argument is to specify the function interface.
Fortunately, we have already defined the interface for a generic linear operator. To use the
dot_test program, you need to initialize an operator with specific arguments (the_init

subroutine) and then pass the operator itself (the_lop function) to the test program. You
also need to specify the sizes of the model and data vectors so that temporary arrays can be
constructed. The program runs the dot product test twice, second time withadd = .true.

to test if the operator can be used properly for accumulating the result likey← y+Bx.

module dottest {
logical, parameter, private :: T = .true., F = .false.

26 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

contains
subroutine dot_test(oper, n_mod, n_dat, dot1, dot2) {

integer, intent (in) :: n_mod, n_dat
real, dimension (2), intent (out) :: dot1, dot2
interface {

function oper(adj, add, mod, dat) result(stat) {
integer :: stat
logical, intent (in) :: adj, add
real, dimension (:) :: mod, dat
}

}
real, dimension(n_mod) :: mod1, mod2
real, dimension(n_dat) :: dat1, dat2
integer :: stat
call random_number(mod1); call random_number(dat2)
stat = oper(F, F, mod1, dat1); dot1(1) = dot_product(dat1, dat2)
stat = oper(T, F, mod2, dat2); dot1(2) = dot_product(mod1, mod2)
write (0,*) dot1
stat = oper(F, T, mod1, dat1); dot2(1) = dot_product(dat1, dat2)
stat = oper(T, T, mod2, dat2); dot2(2) = dot_product(mod1, mod2)
write (0,*) dot2

}
}

I tested (1.29) on many operators and was surprised and delighted to find that it is often
satisfied to an accuracy near the computing precision. I do not doubt that larger rounding errors
could occur, but so far, every time I encountered a relative discrepancy of 10−5 or more, I was
later able to uncover a conceptual or programming error. Naturally, when I do dot-product
tests, I scale the implied matrix to a small dimension in order to speed things along, and to be
sure that boundaries are not overwhelmed by the much larger interior.

Do not be alarmed if the operator you have defined hastruncation errors. Such errors
in the definition of the original operator should be identically matched by truncation errors
in the adjoint operator. If your code passes thedot-product test, then you really have coded
the adjoint operator. In that case, to obtain inverse operators, you can take advantage of the
standard methods of mathematics.

We can speak of acontinuous function f (t) or a discrete function ft . For continuous
functions we use integration, and for discrete ones we use summation. In formal mathematics,
the dot-product testdefinesthe adjoint operator, except that the summation in the dot product
may need to be changed to an integral. The input or the output or both can be given either on a
continuum or in a discrete domain. So the dot-product testy′ỹ= x̃′x could have an integration
on one side of the equal sign and a summation on the other. Linear-operator theory is rich with
concepts not developed here.

1.2.3 The word “adjoint”

In mathematics the word “adjoint ” has three meanings. One of them, the so-calledHilbert
adjoint , is the one generally found in physics and engineering and it is the one used in this

1.2. ADJOINT DEFINED: DOT-PRODUCT TEST 27

book. In linear algebra is a different matrix, called theadjugate matrix. It is a matrix whose
elements are signed cofactors (minor determinants). For invertible matrices, this matrix is the
determinant times theinverse matrix. It can be computed without ever using division, so
potentially the adjugate can be useful in applications where an inverse matrix does not exist.
Unfortunately, the adjugate matrix is sometimes called the adjoint matrix, particularly in the
older literature. Because of the confusion of multiple meanings of the word adjoint, in the
first printing of PVI I avoided the use of the word and substituted the definition, “conjugate
transpose”. Unfortunately this was often abbreviated to “conjugate,” which caused even more
confusion. Thus I decided to use the word adjoint and have it always mean the Hilbert adjoint
found in physics and engineering.

1.2.4 Matrix versus operator

Here is a short summary of where we have been and where we are going: Start from the class
of linear operators, add subscripts and you get matrices. Examples of operators without sub-
scripts are routines that solve differential equations and routines that do fast Fourier transform.
What people call “sparse matrices” are often not really matrices but operators, because they
are not defined by data structures but by routines that apply them to a vector. With sparse
matrices you easily can doA(B(Cx)) but not (ABC)x.

Although a linear operator does not have defined subscripts, you can determine what would
be the operator value at any subscript: by applying the operator to an impulse function, you
would get a matrix column. The adjoint operator is one from which we can extract the trans-
pose matrix. For large spaces this extraction is unwieldy, so to test the validity of adjoints, we
probe them with random vectors, sayx andy, to see whethery′(Ax) = (A′y)′x. Mathemati-
cians define adjoints by this test, except that instead of using random vectors, they say “for all
functions,” which includes the continuum.

This defining test makes adjoints look mysterious. Careful inspection of operator adjoints,
however, generally reveals that they are built up from simple matrices. Given adjointsA′,
B′, andC′, the adjoint ofABC is C′B′A′. Fourier transforms and linear-differential-equation
solvers are chains of matrices, so their adjoints can be assembled by the application of adjoint
components in reverse order. The other way we often see complicated operators being built
from simple ones is when operators are put into components of matrices, typically a 1×2 or
2×1 matrix containing two operators. An example of the adjoint of a two-component column
operator is [

A
B

]′
=

[
A′ B′

]
(1.30)

Although in practice an operator might be built from matrices, fundamentally, a matrix is
a data structure whereas an operator is a procedure. A matrix is an operator if its subscripts
are hidden but it can be applied to a space, producing another space.

As matrices have inverses, so do linear operators. You don’t need subscripts to find an
inverse. The conjugate-gradient method and conjugate-direction method explained in the next

28 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

chapter are attractive methods of finding them. They merely applyA andA′ and use inner
products to find coefficients of a polynomial inAA ′ that represents the inverse operator.

Whenever we encounter apositive-definitematrix we should recognize its likely origin in
a nonsymmetric matrixF times its adjoint. Those in natural sciences often work on solving
simultaneous equations but fail to realize that they should return to the origin of the equa-
tions which is often a fitting goal; i.e., applying an operator to a model should yield data,
i.e.,d≈ d0+F(m−m0) where the operatorF is a partial derivative matrix (and there are po-
tential underlying nonlinearities). This begins another story with new ingredients, weighting
functions and statistics.

1.2.5 Inverse operator

A common practical task is to fit a vector of observed datadobs to some theoretical datadtheor

by the adjustment of components in a vector of model parametersm.

dobs ≈ dtheor = Fm (1.31)

A huge volume of literature establishes theory for two estimates of the model,m̂1 andm̂2,
where

m̂1 = (F′F)−1F′d (1.32)

m̂2 = F′(FF′)−1d (1.33)

Some reasons for the literature being huge are the many questions about the existence, quality,
and cost of the inverse operators. Before summarizing that, let us quickly see why these two
solutions are reasonable. Inserting equation (1.31) into equation (1.32), and inserting equation
(1.33) into equation (1.31), we get the reasonable statements:

m̂1 = (F′F)−1(F′F)m = m (1.34)

d̂theor = (FF′)(FF′)−1d = d (1.35)

Equation (1.34) says that the estimatem̂1 gives the correct modelm if you start from the
theoretical data. Equation (1.35) says that the model estimatem̂2 gives the theoretical data if
we derivem̂2 from the theoretical data. Both of these statements are delightful. Now let us
return to the problem of the inverse matrices.

Strictly speaking, a rectangular matrix does not have an inverse. Surprising things often
happen, but commonly, whenF is a tall matrix (more data values than model values) then the
matrix for findingm̂1 is invertible while that for findingm̂2 is not, and when the matrix is
wide instead of tall (the number of data values is less than the number of model values) it is
the other way around. In many applications neitherF′F nor FF′ is invertible. This difficulty
is solved by “damping” as we will see in later chapters. The point to notice in this chapter on
adjoints is that in any application whereFF′ or F′F equalsI (unitary operator), that the adjoint
operatorF′ is the inverseF−1 by either equation (1.32) or (1.33).

1.2. ADJOINT DEFINED: DOT-PRODUCT TEST 29

Theoreticians like to study inverse problems wherem is drawn from the field of continuous
functions. This is like the vectorm having infinitely many components. Such problems are
hopelessly intractable unless we find, or assume, that the operatorFF′ is an identity or diagonal
matrix.

In practice, theoretical considerations may have little bearing on how we proceed. Current
computational power limits matrix inversion jobs to about 104 variables. This book specializes
in big problems, those with more than about 104 variables, but the methods we learn are also
excellent for smaller problems.

1.2.6 Automatic adjoints

Computers are not only able to perform computations; they can do mathematics. Well known
software is Mathematica and Maple. Adjoints can also be done by symbol manipulation. For
example Ralf Giering3 offers a program for converting linear operator programs into their
adjoints.

EXERCISES:

1 Suppose a linear operatorF has its input in the discrete domain and its output in the
continuum. How does the operator resemble a matrix? Describe the operatorF′ that has
its output in the discrete domain and its input in the continuum. To which do you apply
the words “scales and adds some functions,” and to which do you apply the words “does
a bunch of integrals”? What are the integrands?

3http://klima47.dkrz.de/giering/tamc/tamc.html

268 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

Index

adjoint, 1, 12, 26
adjoint

defined, 24
operator, 27
truncation errors, 26

adjugate, 27
anticausal integration, 17

back projection, 2
bin2 operator module, 13

causal integration, 16
conjugate transpose, 27
conjugate-transpose, 25
continuous function, 26
convolution, 8
convolution

internal, 9
transient, 8

crosscorrelate, 8

damping, 28
data tracks, 24
data-push binning, 13
derivative, 5
determinant, 27
differential equation, 17
discrete function, 26
dot product, 24
dot-product test, 25, 26
dottest module, 25

end effect, 11

filter impulse response, 5
Fourier analysis, 2
Fourier transformation, 12

gather, 15

Hilbert adjoint, 26
hypotenusei operator module, 23

icaf1 operator module, 10
igrad1 operator module, 5
imospray operator module, 23
index, 31
integration

causal, 16
leaky, 16

inverse matrix, 27
inversion, 1

leakint operator module, 17
leaky integration, 16
linear interpolation, 14
lint1 operator module, 15
Loptran, 3

matmult operator module, 3
matrix multiply, 1, 2
modeling, 2
module

dottest , dot-product test, 25

nearest neighbor binning, 13
nearest neighbor coordinates, 12
NMO, 22
NMO stack, 22
norm, 24
normal moveout, 22

operator, 1, 27
bin2 , push data into bin, 13
hypotenusei , inverse moveout, 23
icaf1 , convolve internal, 10
igrad1 , first difference, 5
imospray , inverse NMO spray, 23
leakint , leaky integral, 17

269

270 INDEX

lint1 , linear interp, 15
matmult , matrix multiply, 3
polydiv1 , deconvolve, 19
spraysum , sum and spray, 16
tcaf1 , transient convolution, 9
tcai1 , transient convolution, 9
zpad1 , zero pad 1-D, 11

operator
adjoint, 27

polydiv1 operator module, 19
positive-definite, 28
processing, 2
pseudocode, 3

recursion
integration, 17

scatter, 15
space, 24
spray, 15
spraysum operator module, 16
stack, 22
summation operator, 15

tcaf1 operator module, 9
tcai1 operator module, 9
tomography, 2
traveltime depth, 22
truncation, 11, 12, 26

vector space, 24

weighting function, 24

zero pad, 11, 12
zpad1 operator module, 11

